
HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 1 of 73

HORIZON 2020 - ICT-14-2016-1

AEGIS

Advanced Big Data Value Chains for Public Safety and Personal Security

WP3 - System Requirements, User stories, Architecture and

MicroServices

D3.3 – Architecture and Revised

Components, Microservices and APIs

Designs v2.00

Version 1.1

Due date: 30.03.2018 Delivery Date: 19.07.2018 (updated)

Author(s): Dimitrios Miltiadou, Konstantinos Perakis, Stamatis Pitsios (UBITECH), Elisa

Rossi, Alessandro Calcagno (GFT), Mahmoud Ismail, Alexandru A. Ormenisan

(KTH), Yury Glikman, Fabian Kirstein, Fritz Meiners (Fraunhofer), Giannis

Tsapelas, Panagiotis Kokkinakos, Spiros Mouzakitis, Christos Botsikas (NTUA),

Sotiris Koussouris, Marios Phinikettos (SUITE5)

Editor: Dimitrios Miltiadou (UBITECH)

Lead Beneficiary of Deliverable: UBITECH

Dissemination level: Public Nature of the Deliverable: Report

Internal Reviewers: Maurizio Megliola (GFT), Evmorfia Biliri (NTUA)

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 2 of 73

Remark: The versioning is only for the word documents in the formation phase and should be kept

internally. Please delete the versioning before creating the final pdf that goes to the commission. It can

be provided to the commission on request. Please document only major versions and such versions that

indicate through the versioning, who (person and which partner) has contributed/was responsible for the

different chapter, if this is feasible.

EXPLANATIONS FOR FRONTPAGE

Author(s): Name(s) of the person(s) having generated the Foreground respectively having written the

content of the report/document. In case the report is a summary of Foreground generated by other

individuals, the latter have to be indicated by name and partner whose employees he/she is. List them

alphabetically.

Editor: Only one. As formal editorial name only one main author as responsible quality manager in

case of written reports: Name the person and the name of the partner whose employee the Editor is. For

the avoidance of doubt, editing only does not qualify for generating Foreground; however, an individual

may be an Author – if he has generated the Foreground - as well as an Editor – if he also edits the report

on its own Foreground.

Lead Beneficiary of Deliverable: Only one. Identifies name of the partner that is responsible for the

Deliverable according to the AEGIS DOW. The lead beneficiary partner should be listed on the

frontpage as Authors and Partner. If not, that would require an explanation.

Internal Reviewers: These should be a minimum of two persons. They should not belong to the authors.

They should be any employees of the remaining partners of the consortium, not directly involved in that

deliverable, but should be competent in reviewing the content of the deliverable. Typically this review

includes: Identifying typos, Identifying syntax & other grammatical errors, Altering content, Adding or

deleting content.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 3 of 73

AEGIS KEY FACTS

Topic: ICT-14-2016 - Big Data PPP: cross-sectorial and cross-lingual data

integration and experimentation

Type of Action: Innovation Action

Project start: 1 January 2017

Duration: 30 months from 01.01.2017 to 30.06.2019 (Article 3 GA)

Project Coordinator: Fraunhofer

Consortium: 10 organizations from 8 EU member states

AEGIS PARTNERS

Fraunhofer Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

GFT GFT Italia SRL

KTH Kungliga Tekniska högskolan

UBITECH UBITECH Limited

VIF Kompetenzzentrum - Das virtuelle Fahrzeug , Forschungsgesellschaft-

GmbH

NTUA National Technical University of Athens – NTUA

EPFL École polytechnique fédérale de Lausanne

SUITE5 SUITE5 Limited

HYPERTECH HYPERTECH (CHAIPERTEK) ANONYMOS VIOMICHANIKI

EMPORIKI ETAIREIA PLIROFORIKIS KAI NEON TECHNOLOGION

HDIA HDI Assicurazioni S.P.A

Disclaimer: AEGIS is a project co-funded by the European Commission under the Horizon

2020 Programme (H2020-ICT-2016) under Grant Agreement No. 732189 and is contributing

to the BDV-PPP of the European Commission.

The information and views set out in this publication are those of the author(s) and do not

necessarily reflect the official opinion of the European Communities. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held responsible for

the use which may be made of the information contained therein.

© Copyright in this document remains vested with the AEGIS Partners

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 4 of 73

EXECUTIVE SUMMARY

The scope of D3.3 is to document the efforts undertaken within the context of the tasks 3.1, 3.2,

3.3, 3.4 and 3.5 of WP3. Towards this end, the scope of this deliverable is to build on top of the

outcomes and knowledge extracted by D3.2 as well as the evaluation and feedback received for

the first low fidelity, functional mock-up version of the AEGIS platform in order to define the

necessary modifications and refinements on the components of the platform and the platform’s

workflows. The current deliverable provides a complementary documentation supplementing

the information documented in deliverable D3.2 focusing on the updates introduced.

The document at hand is the revised version (v1.1) of the deliverable D3.3. The deliverable has

been revised with the aim of documenting the updated information on the latest architectural

decisions, providing also the technical architecture of the platform and highlighting the list of

microservices included within the design of each component of the architecture.

More specifically, the objectives of the deliverable D3.3 are as follows:

 Provide a comprehensive description of the updated high-level architecture of the

AEGIS platform as presented in deliverable D3.2, focusing on the architectural

decisions, the updated components and their positioning within the architecture and the

platform functionalities undertaken by each component. Additionally, the technical

architecture of the AEGIS platform is presented, illustrating the functional

decomposition of the components, the relationship between them and the corresponding

data flow.

 Provide the updates and definitions with regards to the design and the specifications for

each component of the platform.

 Outline the updated functionalities of each component of the platform along with the

technologies and tools utilised in order to implement the aforementioned functionalities.

 Document the list of microservices and their corresponding functionalities for each

component of the platform.

 Document the interfaces and exposed outcomes offered by each component to facilitate

the interactions of the components as well as the execution of the workflows of the

platform.

 Present the updated BPMN diagrams that are illustrating the AEGIS platform’s

workflow, focusing on the user perspective and on the interactions of the components

on a high-level.

In the next steps the outcomes of this deliverable will drive the implementation activities of the

project. As the project evolves, additional requirements will be received that will introduce new

functionalities on the platform. Furthermore, once the upcoming version of the platform will be

released, additional feedback will be received and evaluated. This will result in further updates

and refinements on the platform and the platform’s components that will be documented in

D3.4 entitled “Architecture and Revised Components, Microservices and APIs Designs –

v3.00”.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 5 of 73

Table of Contents

EXPLANATIONS FOR FRONTPAGE .. 2

AEGIS KEY FACTS .. 3

AEGIS PARTNERS .. 3

EXECUTIVE SUMMARY ... 4

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

ABBREVIATIONS ... 9

1. INTRODUCTION ... 11

1.1. OBJECTIVE OF THE DELIVERABLE ... 11
1.2. INSIGHTS FROM OTHER TASKS AND DELIVERABLES .. 11
1.3. STRUCTURE .. 12

2. AEGIS ARCHITECTURE ... 13

2.1. HIGH LEVEL ARCHITECTURE ... 13
2.2. TECHNICAL ARCHITECTURE ... 15
2.3. AEGIS INTEGRATED NOTEBOOKS ... 15

3. AEGIS COMPONENTS AND APIS SPECIFICATIONS .. 17

3.1. DATA HARVESTER AND ANNOTATOR ... 17
3.1.1. Overview .. 17
3.1.2. List of microservices .. 19
3.1.3. Technologies to be used ... 20
3.1.4. APIs and exposed outcomes... 21

3.2. CLEANSING TOOL ... 22
3.2.1. Overview .. 22
3.2.2. List of microservices .. 24
3.2.3. Technologies to be used ... 26
3.2.4. APIs and exposed outcomes... 27

3.3. ANONYMISATION TOOL .. 27
3.3.1. Overview .. 27
3.3.2. List of microservices .. 28
3.3.3. Technologies to be used ... 29
3.3.4. APIs and exposed outcomes... 30

3.4. BROKERAGE ENGINE .. 30
3.4.1. Overview .. 30
3.4.2. List of microservices .. 31
3.4.3. Technologies to be used ... 32
3.4.4. APIs and exposed outcomes... 33

3.5. AEGIS DATA STORE .. 38
3.5.1. Overview .. 38
3.5.2. HopsFS filesystem.. 38
3.5.3. AEGIS Linked Data Store .. 40

3.6. AEGIS INTEGRATED SERVICES .. 43
3.6.1. Overview .. 43
3.6.2. List of microservices .. 43
3.6.3. Technologies to be used ... 44
3.6.4. APIs and exposed outcomes... 44

3.7. QUERY BUILDER .. 45
3.7.1. Overview .. 45
3.7.2. List of microservices .. 47
3.7.3. Technologies to be used ... 48

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 6 of 73

3.7.4. APIs and exposed outcomes... 49
3.8. VISUALISER .. 49

3.8.1. Overview .. 49
3.8.2. List of microservices .. 51
3.8.3. Technologies to be used ... 52
3.8.4. APIs and exposed outcomes... 53

3.9. ALGORITHM EXECUTION CONTAINER .. 53
3.9.1. Overview .. 53
3.9.2. List of microservices .. 54
3.9.3. Technologies to be used ... 55
3.9.4. APIs and exposed outcomes... 55

3.10. AEGIS FRONT-END ... 55
3.10.1. Overview .. 55
3.10.2. List of microservices .. 57
3.10.3. Technologies to be used ... 57
3.10.4. APIs and exposed outcomes ... 58

3.11. HOLISTIC SECURITY APPROACH ... 58
3.11.1. Overview .. 58
3.11.2. Technologies to be used ... 60
3.11.3. API ... 61

4. USER INTERACTION WORKFLOWS .. 62

4.1. SIGN-UP AND LOGIN ... 62
4.2. DATA IMPORT ... 62

4.2.1. Importing data for a new dataset ... 62
4.2.2. Anonymisation workflow ... 63
4.2.3. Data cleansing workflow ... 63

4.3. DATA AND SERVICE EXPLORATION (SEARCH) ... 64
4.3.1. From the main AEGIS platform ... 64
4.3.2. Using query builder ... 64

4.4. DATA EXPORT FROM AEGIS .. 67
4.5. ARTEFACT SHARING/REUSE .. 67
4.6. SERVICE CREATION .. 70
4.7. SERVICE CONSUMPTION ... 70

5. CONCLUSION.. 72

APPENDIX A: LITERATURE ... 73

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 7 of 73

LIST OF FIGURES

Figure 2-1: AEGIS high-level architecture .. 13

Figure 2-2: AEGIS Technical Architecture ... 16

Figure 3-1: Sequence diagram of the Harvester component .. 18

Figure 3-2: The harvester interface .. 20

Figure 3-3: Harvester Orchestration Concept .. 21

Figure 3-4: Offline data cleansing sequence diagram .. 24

Figure 3-5: Data anonymisation sequence diagram ... 28

Figure 3-6: Brokerage Engine sequence diagram .. 31

Figure 3-7: Query building and execution workflow ... 46

Figure 3-8: Sequence diagram of the visualiser component .. 50

Figure 3-9: Algorithm Execution Container sequence diagram ... 54

Figure 3-10: Main menu from the AEGIS platform .. 56

Figure 4-1: Sign-up and Login workflow .. 62

Figure 4-2: Importing data and metadata and registering them as a part of a new dataset 63

Figure 4-3: Data anonymisation workflow .. 63

Figure 4-4: Data cleansing workflow ... 64

Figure 4-5: Data and service exploration workflow ... 64

Figure 4-6: Dataset exploration through query builder workflow ... 66

Figure 4-7: Data acquisition sub-process workflow .. 67

Figure 4-8: Data export workflow .. 67

Figure 4-9: Artefact Sharing Workflow ... 69

Figure 4-10: Service creation workflow ... 70

Figure 4-11: AEGIS Service consumption workflow .. 71

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 8 of 73

LIST OF TABLES

Table 3-1: Harvester list of microservices ... 19

Table 3-2: Data Harvester and Annotator technical interface 2 ... 22

Table 3-3: Cleansing Tool list of microservices .. 26

Table 3-4: Offline Cleansing tool technical interface .. 27

Table 3-5: Anonymisation Tool list of microservices .. 29

Table 3-6: Anonymisation tool technical interface .. 30

Table 3-7: Brokerage engine list of microservices ... 32

Table 3-8: Brokerage Engine technical interface 1 .. 33

Table 3-9: Brokerage Engine technical interface 2 .. 34

Table 3-10: Brokerage Engine technical interface 3 .. 35

Table 3-11: Brokerage Engine technical interface 4 .. 35

Table 3-12: Brokerage Engine technical interface 5 .. 36

Table 3-13: Brokerage Engine technical interface 6 .. 37

Table 3-14: Brokerage Engine technical interface 7 .. 37

Table 3-15: HopsFS list of microservices .. 38

Table 3-16: AEGIS Data Store technical interface 1 ... 40

Table 3-17: AEGIS Data Store technical interface 2 ... 40

Table 3-18: AEGIS Linked Data Store list of microservices ... 41

Table 3-19: AEGIS Linked Data Store technical interface .. 42

Table 3-20: AEGIS Integrated services list of microservices .. 44

Table 3-21: Query Builder list of microservices .. 48

Table 3-22: Visualiser list of microservices ... 52

Table 3-23: Algorithm Execution Container list of microservices .. 55

Table 3-24: AEGIS Front-End list of microservices .. 57

Table 3-25: Holistic Security Approach summary ... 60

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 9 of 73

ABBREVIATIONS

API Application programming interface

BPMN Business Process Model and Notation

CO Confidential, only for members of the Consortium (including the Commission Services)

CSS Cascading Style Sheets

CSV Comma Separated Value files

D Deliverable

DLT Distributed ledger technology

DoW Description of Work

DPF Data Policy Framework

FLOSS Free/Libre Open Source Software

HTML Hypertext Markup Language

H2020 Horizon 2020 Programme

JSON JavaScript Object Notation

JWT JSON Web Token

NLP Natural language processing

OSS Open Source Software

PSPS Public Safety and Personal Security

PU Public

PM Person Month

R Report

RDF Resource Description Framework

REST Representational State Transfer

RTD Research and Development

SQL Structured Query Language

SSL Secure Sockets Layer

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 10 of 73

T Task

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

WP Work Package

XML Extensible Markup Language

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 11 of 73

1. INTRODUCTION

1.1. Objective of the deliverable

The scope of D3.3 is to document the efforts within the context of the tasks 3.1, 3.2, 3.3, 3.4

and 3.5 of WP3. Towards this end, the scope of the current deliverable is to document the

updates and refinements introduced on the AEGIS platform and platform’s components, as well

as the updates on the APIs and exposed outcomes of the components, based on the evaluation

and feedback received for the first low fidelity, functional mock-up version of the AEGIS

platform that was delivered in M14, as documented with deliverable D4.1.

The main objective of the current deliverable is to provide a complementary documentation

supplementing the information documented in deliverable D3.2. More specifically, the current

document is providing all the necessary updated descriptions on the design and specifications

of the AEGIS components, the AEGIS platform workflows, as well as the updated high-level

architecture. For reasons of coherency, the current document contains information included in

deliverable D3.2 with the additions and modifications pointed out at the end of each section.

Following the approach used in the previous version, the updated high-level architecture is

presented, describing how each component corresponds to a specific functionality of the

platform with use of the specific technologies and tools. It should be noted at this point that in

the current document there was no differentiation on the architecture as documented in D3.2,

however the provided documentation is focusing on the positioning of the updated components

within the architecture. In addition to the high-level architecture, the AEGIS platform’s

technical architecture is presented with the major focus being on the functional decomposition

of the components, the relationship among them and the data flow.

The current document provides the updated detailed descriptions of the components of the

AEGIS platform, outlining the functionalities and the interactions between them, the list of

microservices designed within the context of each component, the technologies used, the

technical interfaces and exposed outcomes offered. In addition to the aforementioned, the

current document is presenting the BPMN diagrams illustrating the workflows of the AEGIS

platform as documented in D3.2 with the necessary adaptations based on the updates of the

components.

It should be noted that the document at hand is the revised version (v1.1) of the deliverable

D3.3 that includes the latest information in terms of architectural decisions along with the

technical architecture of the platform, as well as the list of microservices for each designed

component of the platform.

1.2. Insights from other tasks and deliverables

The deliverable builds on top of the work reported in WP3 and WP4. In particular, the work

performed in WP3, as reported in D3.1 and D3.2, provided valuable information concerning

the functional and technical requirements collected, the initial design of the platform’s

components, the high-level architecture of the platform as well as the platform’s workflows.

Another useful insight is the work performed within the context of WP4, as reported in D4.1

where the first low fidelity, functional mock-up version of the platform was delivered. The first

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 12 of 73

evaluation and feedback received from the project’s demonstrators serves as the basis upon

which the updates and refinements on the platform and the platform’s components were built.

1.3. Structure

Deliverable D3.3 is organised in five main sections as indicated in the table of contents.

- The first section introduces the deliverable. It documents the objectives of the

deliverable and the relation of the current deliverable with the other deliverables by

describing how the outcomes of other deliverables and work-packages serves as

input to the current deliverable. Finally, a brief description is provided on how the

document is structured.

- The second section presents the high-level architecture of the AEGIS platform as

documented in D3.2, focusing on the positioning of the updated components within

the architecture. Moreover, the technical architecture of the AEGIS platform is

presented, illustrating the functional decomposition of the components, their

relationships and the respective data flow. Finally, in this section the decision to

provide an integrated notebook containing three major components of the AEGIS

platform is documented.

- The third section provides the updated documentation of the components of the

AEGIS platform. In this section for each component an overview containing the

component’s updated functionalities along with the list of designed microservices is

presented, as well as the technologies used for the implementation of the

components and the APIs or the exposed outcomes of the components focusing on

the updates after deliverable D3.2 (when available).

- The fourth section is presenting the BPMN diagrams that correspond to the provided

functionalities of the AEGIS platform focusing on the user perspective and on

summarising the component interactions in a high-level without the technical

details.

- The fifth section concludes the deliverable. It outlines the main findings of the

deliverable which will guide the future research and technological efforts of the

consortium.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 13 of 73

2. AEGIS ARCHITECTURE

2.1. High level architecture

In deliverable D3.2 the updated high-level architecture of the AEGIS platform was presented.

This updated architecture included all the necessary refinements and adjustments towards the

aim of enabling the designed workflows that will enable the data-driven innovation in the PSPS

domains as envisioned by the consortium. The presented high-level architecture had driven the

implementation and release of the first low fidelity, functional mock-up version of the AEGIS

platform, which was presented in D4.1 in M14.

The AEGIS high-level architecture is a modular architecture composed of multiple key

components, where each component was designed with a clear business context, scope and set

of functionalities. Figure 2-1 illustrates the high-level architecture, which remained unaffected

in terms of design, functionalities and interactions, as there were no additional requirements

identified requiring the introduction of any additional updates or refinements.

Figure 2-1: AEGIS high-level architecture

Residing at the location of the data, two optional components are offered by the AEGIS

ecosystem, namely the Anonymisation tool and the Cleansing tool. The Anonymisation tool is

an offline tool ensuring that sensitive or personal data are not uploaded in the platform and will

address the privacy and anonymity requirements by applying a set of anonymisation techniques

on the initial dataset. The Cleansing tool will provide the necessary cleansing processes with a

variety of techniques that will be offered in both offline and online mode (through custom

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 14 of 73

processes incorporated inside the integrated notebooks of the platform) depending on the

context of the processes and required corrective actions.

The AEGIS Data Harvester and Annotator is providing the data entry point to the AEGIS

platform offering the transformation, harmonisation and annotation functionalities required

within the context of the platform as well as the rich metadata generation for the imported data.

In the core of the AEGIS platform lays the AEGIS Data Store component, composed by the

HopsFS and the Linked Data Store. HopsFS is a fast, reliable and scalable distributed file

system that undertakes the responsibility for storing the imported datasets, while the Linked

Data Store is responsible for storing the metadata generated using the AEGIS ontology and

vocabulary for each dataset, as provided by the AEGIS Harvester and Annotator.

AEGIS Integrated Services consists of a list of services responsible for the data management

and processing within the platform. In addition to the multi-tenant data management, data

exploration, data parallel processing and resource management, these services implement as

well the user management and service monitoring aspects of the AEGIS platform. The list of

services in AEGIS Integrated Services includes the Apache Zeppelin and Jupyter services

offering interactive notebooks, the ElasticSearch Logstash Kibana (ELK) stack, the Apache

Spark and the HopsYARN, as well as the Dela, the User Management and the KMon services.

In addition to the AEGIS Integrated Services, the AEGIS platform incorporates three more

components in the form of integrated notebooks using Apache Zeppelin and Jupyter, namely

the Query Builder, the Algorithm Execution Container and the Visualiser that are

supplementing the delivered functionalities of the AEGIS platform. More specifically, Query

Builder is simplifying and empowering the querying capabilities of the platform by providing

an intuitive graphical interface for powerful data pre-processing capabilities, data retrieval and

view creation on the data in order to generate a new dataset or provide an input to Algorithm

Execution Container and Visualiser. The Algorithm Execution Container is enabling the

execution of the data analysis algorithms over multiple selected datasets in order to provide the

data analysis results in the Visualiser. Visualiser is the component facilitating the visualisation

functionalities of the platform for either the querying and filtering results as produced by the

Query Builder or the analysis results as produced by the Algorithm Execution Container.

The Brokerage Engine is responsible for access control and recording of actions performed over

the artefacts of the platform such as datasets, services and algorithms. More specifically, the

Brokerage Engine is ensuring conformance with the Data Policy Framework of AEGIS while

also utilising a distributed ledger supported by a blockchain implementation in order to record

all transactions over these artefacts. Finally, the AEGIS Front-End is the component

implementing the presentation layer of the platform using an innovative user-friendly interface

to enable the easy navigation and exploitation of the platform services to the AEGIS

stakeholders.

For each component, a detailed description documenting the functionalities and the technical

details is elaborated in Section 3 of the current deliverable.

It should be noted that the description of the high-level architecture, as presented in the current

revised version of the deliverable D3.3, includes the decision to remove the AEGIS

Orchestrator component from the AEGIS platform architecture. The consortium came to the

conclusion that based on the current design of the architecture of the platform an orchestration

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 15 of 73

engine is not required. According to the current design and specifications of the components of

the platform, all the designed microservices of each component are incorporated and

independently deployed within the context of each component and not exposed to the user or

the rest of the components or services. For example, the HarvesterImporterService and the

HarvesterTransformerService are registered microservices integrated within the Data

Harvester component for the execution of the harvesting process and the Participant Registrant

and Asset Registrant microservices are integrated within the Brokerage Engine for the data

brokerage process, and even though a user could arbitrarily connect them this would not

generate any added value service. Additionally, the various integrated services such as Apache

Zeppelin and Jupyter are standalone services, that are exposed through their corresponding

interfaces, and which could break down without ceasing the AEGIS platform operation. Since

they are exposed and can be triggered at any time by the user, and given that the Query Builder,

the Visualiser and the Algorithm Execution Container will be integrated in one notebook, there

is no need for an orchestration engine that will undertake their sequential execution.

2.2. Technical Architecture

In addition to high-level architecture presented in section 2.1, Figure 2-2 illustrates the

functional decomposition of the components of the AEGIS platform, as well as the relationship

of the components and the corresponding data flow during run-time. The details for the design

and specification of each component are described in Section 3.

2.3. AEGIS Integrated Notebooks

In the course of the development of the Query Builder, the Algorithm Execution Container and

the Visualiser the technical partners decided to leverage the capabilities and features provided

by the Apache Zeppelin and Jupyter services that are already integrated within the AEGIS

platform. Both services are providing functionalities for data ingestion, data discovery, data

analytics and data visualisation to the data scientists, support for various languages such as

Python and Scala, integration with data processing frameworks like Spark and support for user

interface implementation in JavaScript.

Although the aforementioned components were developed as separate predefined notebooks

containing several paragraphs, the integration of them into one complete notebook is foreseen

towards the aim of offering a holistic toolset for data query and retrieval, data pre-processing,

data analysis execution and advanced visualisations. Within this holistic notebook, all the

described functionalities and features of the aforementioned three components will be

integrated to enable the end users of the platform to perform all the desired tasks from this

complete notebook, providing intuitive and advanced user experience. The integration of the

aforementioned is an ongoing activity that will last until M24 when the AEGIS platform V3.00

will be released.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 16 of 73

Figure 2-2: AEGIS Technical Architecture

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 17 of 73

3. AEGIS COMPONENTS AND APIS SPECIFICATIONS

3.1. Data Harvester and Annotator

3.1.1. Overview

The Data Harvester and Annotator is orchestrated out of several sub-components, including

microservices and front-end modules. In connection they represent the process of harvesting,

transforming, harmonising, annotating and providing the required data and metadata for the AEGIS

platform. Therefore, they will be described as one component and from here on simply denominated

as Harvester. The Harvester interacts tightly with the Metadata Service of the AEGIS Linked

Data Store and the AEGIS Data Store and is based on several basic concepts. In the following

paragraphs these concepts are described in detail:

Repository
A repository represents a specific data source and handles the respective connection to it. Each

repository represents descriptive and required data about the data source, where the address (in

most cases a URL) is the most significant one.

Annotation

An annotation constitutes metadata of a project, dataset or file within the AEGIS platform.

Hence it uses the AEGIS vocabularies and ontologies (see deliverable D2.1 Ch.3).

Transformation
A transformation describes all processing rules for converting the source data to the suitable

target format. This may include mapping of fields, harmonisation and any converting.

Harvester
A harvester describes a concrete instance of retrieving data from a data source. It holds metadata

about the harvesting process itself, like the execution schedule. One harvester is linked to a

repository, the corresponding annotation and responsible transformation.

Run

A run depicts the single execution of a harvester, where the data and the metadata are generated

and harvested respectively. It stores metadata about the performance and success of a harvesting

process, which includes detailed logging information.

These concepts are represented in the four microservices and the front-end of the Harvester. It

is important to notice, that each microservice may have multiple instances or rather specialised

implementations. E.g. they may be one importer for CSV data and one importer for JSON data.

Importer
An importer implements all functionality for retrieving data from a specific data source. It needs

to specifically support the characteristic of that data source, including protocol, serialisation

format, security etc. It has to export the harvested data as JSON to the next stage.

Transformer
A transformer converts the retrieved data from an importer into the target format of the AEGIS

platform. Hence, a tabular format is specified for each data source.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 18 of 73

Aggregator
An aggregator collects converted data from a transformer over a configurable time interval. It

allows to adjust the granularity of the available data in one file within the AEGIS platform.

Exporter
The exporter uploads transformed and/or aggregated data to the AEGIS platform. In addition,

it creates the corresponding metadata in the AEGIS Metadata Store. There will be only one

implementation for the exporter.

Front-end

The front-end orchestrates the microservices and offers the visual interface for creating, editing

and existing specific harvesting processes.

Figure 3-1 shows the process of harvesting data from a data source to the AEGIS platform.

Figure 3-1: Sequence diagram of the Harvester component

Updates from V1.0:

The overall methodology did not change, but the specific application and implementation.

The entire architecture of the Harvester was shifted towards a much more agile microservice

approach.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 19 of 73

3.1.2. List of microservices

For the Harvester component four microservices are developed. Each service depicts one

distinct task within the harvesting process. The orchestration of the services is done via a single-

page-application front-end, which will be tightly integrated into the AEGIS platform. All

services expose their functionality via a RESTful-API.

Component

Name

Microservice Name Functionalities

AEGIS Data

Harvester &

Annotator

HarvesterImportService  Handling of repositories, e.g.

creation and modification

 Management of specific

repository connectors

 Execution of the importing

process

 Logging of importing process

 Transfer of the imported data to

the transformer service

HarvesterTransfomerService  Management of transformations

rules and scripts

 Execution of the transformation

from source data to the AEGIS

data format

 Logging of transformation

process

 Transfer of the transformed data

to the aggregator or exporter

service

HarvesterAggregatorService  Optional service for aggregating

imported data for a specified

time interval before exporting it

to the AEGIS platform

 Transfer of aggregated data to

the exporter service

HarvesterExporterService  Handling of the export of the

data to the AEGIS platform

 Direct communication with the

RESTful-API of AEGIS

 Creation of the metadata in the

Metadata-Service based on the

given annotations

Table 3-1: Harvester list of microservices

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 20 of 73

3.1.3. Technologies to be used

The foundation of the AEGIS Harvester is the EDP Metadata Transformer Service (EMTS)1,

an open source solution for harvesting metadata from diverse Open Data sources.

For the purpose of the AEGIS platform, the EMTS is refined and updated to fit the needs of the

project. This includes restructuring the application into small and scalable microservices. This

will be done by extracting the respective functionalities into new standalone services. These

services will be developed with the event-driven Java-framework Eclipse Vert.x2. This will

allow a much tighter integration into the AEGIS platform and the straightforward extension

with additional functionalities. Correspondently, the web front-end will be modified to single-

page-application in order to act as an orchestrator of the various microservices. It will be

implemented based on the JavaScript Vue.js3 framework. Additionally, this will allow a better

integration into the existing front-end of AEGIS platform.

Figure 3-2 shows a mock-up of the future front-end of the Harvester.

Figure 3-2: The harvester interface

The orchestration architecture used for the AEGIS Harvester follows a “pipeline“ pattern, in

which data is passed through several services, with each service manipulating the data in some

sort. Each service is responsible for exactly one task. This permits a rather generic

1 The original source code can be found here: (https://gitlab.com/european-data-

portal/MetadataTransformerService)

2 https://vertx.io/

3 https://vuejs.org/

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 21 of 73

implementation of each service. The aim is to encourage a separation of concerns in order to

enhance reusability, as well as allowing the dynamic scaling in times of high load. The latter is

achieved by deploying additional instances of the services demanded most. Once new instances

are spawned, request may dynamically be routed to the instance of a service with the least load.

This is shown in Figure 3-3.

Figure 3-3: Harvester Orchestration Concept

The order and type of services participating in handling a certain use case is initially defined

for later utilisation by the pipe implementation. The framework then builds the suitable requests

(as well as the handling the concrete routing between instances) and provides the applicable

configurations. This makes each service agnostic of its surroundings, aiding in the generic

design mentioned earlier.

Updates from V1.0:

After a detailed evaluation, the application of the StreamSets Data Collector will be omitted.

Practical tests have shown that the tool does not fit the needs of the AEGIS platform and

required changes will be too extensive. Instead, the EMTS will be enhanced and extended to

be suitable tool for harvesting and annotating data in the AEGIS project.

3.1.4. APIs and exposed outcomes

The following tables document the API of the Data Harvester and Annotator component.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 22 of 73

Technical Interface

Reference Code AH#01

Function Orchestrate, schedule and manage harvesting processed

Subsystems EDP Metadata Transformer Service

Type, State

RESTful API, Web Front-end

Endpoint URI

http://aegis-harvester.fokus.fraunhofer.de (Testing system)

Input Data

Harvester endpoints

Output Data

Status logs

Table 3-2: Data Harvester and Annotator technical interface 2

3.2. Cleansing Tool

3.2.1. Overview

Data cleansing is an umbrella term for tasks that span from simple data pre-processing, like

restructuring, predefined value substitutions and reformatting of fields (e.g. dates) to more

advanced processes, such as outliers’ detection and elimination from a dataset. Particularly in

the AEGIS context of big data processing and analysis, cleansing may, by itself, be a process

requiring big data technologies to be applied.

The initial AEGIS decision on data cleansing was to not develop data cleansing tools from

scratch and instead support the following two-fold approach: (a) simple data cleansing

transformations will be applied through existing mature tools offline and (b) more complex data

cleansing (e.g. outlier detection and removal) will be offered through custom cleansing

processes developed within the available AEGIS tools for big data processing and algorithm

execution. Based on the technical advancements of the project, the second option is now offered

with the help of the Notebooks and Notebook-based components, which leverage the AEGIS

processing and analytical capabilities.

However, the consortium has decided to extend the initial approach in the following two ways:

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 23 of 73

It has become obvious that cleansing tasks that are both easy/straightforward and at the same

time computationally intense, may emerge as steps of the analysis to be performed, i.e. they

may be dependent on the specific application and not on intrinsic characteristics of the original

dataset. These tasks will need to be performed as part of the online data manipulation. Hence,

in order to provide a more intuitive user experience and also leverage the computational power

of the AEGIS system, it was decided to make certain simple data cleansing functionalities

available to the user during the data query creation process, i.e. when he/she should be more

confident about the desired data manipulation needed to perform in order to use the data for

further analysis. Hence, some simple custom cleansing processes are incorporated inside Query

Builder as part of the data selection process and will be described in the corresponding section.

Additionally, the consortium identified the added value of providing an offline cleansing tool

that will offer a level of customisation to the users and will be easily adaptable to the user’s

needs depending on the nature of the data source. Thus, it was decided to implement the offline

cleansing tool that will enable data validation, data cleansing and data completion processes

towards the aim of increasing the reliability, accuracy and completeness of the data that will be

imported in the AEGIS platform. The tool will be customisable, in terms of rules definitions

for validation, cleansing and missing data handling, by the user and will provide web-based

user interface to display the cleansing process results.

The main functionalities of the offline cleansing tool are as follows:

- Definition of the rules for cleansing process (data validation, data cleansing, data

completion).

- Provide a RESTful interface to facilitate the uploading of the dataset that will be used

in the cleansing process and provide the cleaned data.

- Report the cleansing process results through a user interface.

The following figure shows the sequence diagram for the offline data cleansing. The sequence

diagrams for data cleansing performed through other tools will be provided in the corresponding

sections.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 24 of 73

Figure 3-4: Offline data cleansing sequence diagram

Updates from V1.0:

A new approach to data cleansing is provided.

Specifically, an offline cleansing tool will be developed that will be customisable according

to the user’s needs for data validation, data cleansing and data completion.

Moreover, simple data filtering and cleansing functionalities will be provided through the

Query Builder. In this way the user is offered a more intuitive workflow since data cleansing

requirements may be not known prior to and independently of the query creation process.

Furthermore, the computational power of the AEGIS system is fully leveraged, ultimately

allowing the user to perform more quickly the necessary data cleansing tasks which may

entail heavy processes when dealing with big data.

3.2.2. List of microservices

For the offline data cleansing a list of microservices will be developed and will be orchestrated

towards the execution of the cleansing tasks and the successful handling of the incoming

requests for data cleaning transformations and corrective actions. In particular, the Cleansing

Process, as shown in Figure 3-4, is composed by four microservices. The first microservice, the

ConfiguratorService is undertaking the management of the constraints/rules for validation and

data completion, as well as the corrective actions/rules. Additionally, three microservices, the

ValidatorService, the CleanserService and the CompleteteService, are responsible for the data

validation, the data cleansing and the data completion respectively. The ErrorLoggerService is

the microservice responsible for the collection and management of the log records that contain

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 25 of 73

the identified errors and the corrective actions from the execution of the microservices of the

Cleansing Process. Moreover, the ErrorLoggerService is providing the input for the Cleansing

User Interface that reports the execution results to the user.

In total five microservices will be developed and are described in the following table:

Component Name Microservice Name Functionalities

Cleansing Tool

(Offline)

ConfiguratorService  Maintain and manage the

constraints/rules for validation

(e.g. specific data types, value

representation, uniformity, range,

regular expression patterns, cross-

field validity)

 Maintain and manage the

corrective actions/rules (e.g.

rejection of values, logical error

identification)

 Maintain and manage the data

completion rules

ValidatorService  Perform data validation in

accordance to the constrains/rules

 Compile the list of identified

errors identified in the validation

 Log the errors in the appropriate

log file

 Provide interface for remote

execution

CleanserService  Perform data cleaning based on

the defined rules

 Log the corrective actions in the

appropriate log file

 Provide interface for remote

execution

CompleterService  Implement a list of methods /

algorithms for data completion

(e.x. Last Observation Carried

Forward, Last Non-Zero, moving

average, Linear regression, mean,

median, k-NN).

 Perform data completion based on

the defined rules, algorithms and

methods

 Log the corrective actions in the

appropriate log

 Provide interface for remote

execution

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 26 of 73

ErrorLoggerService  Create and display log records

containing the errors and

corrective actions

 Manage log files generated by the

rest of the microservices

 Provide an interface for the rest of

the microservices for log record

creation

Table 3-3: Cleansing Tool list of microservices

For the cleansing functionalities that are offered through the Notebooks and Notebook-based

components, the relevant microservices are described in the corresponding sections.

3.2.3. Technologies to be used

For the online data cleansing, either through the dedicated data cleansing UI in the Query

Builder or through custom processes -implemented with the help of the Apache Zeppelin and

Jupyter Notebooks (which are part of the AEGIS Integrated Services) will be used. More details

are provided in the corresponding tools’ sections.

For the offline cleansing processes, which will be applied before importing data in AEGIS with

the aim of making the data more easily processable by subsequent components in the data flow,

the microservices architecture is followed and the corresponding microservices, as described in

section 0, are written in Python, using Flask microframework4 and a set of libraries such as

Pandas5 and NumPy6.

Updates from V1.0:

Query Builder is extended to support data cleansing functionalities, so technologies used by

that tool are also relevant here. The technologies used to create the Query Builder user

interface for data manipulation inside the two Notebooks (Apache Zeppelin and Jupyter)

include JavaScript, HTML, PySpark, Python and AngularJS (only in the Zeppelin version).

Additionally, the offline cleansing tool is implemented utilising the Python microframework

Flask, supported by a set of libraries such as Pandas and NumPy.

4 http://flask.pocoo.org/

5 https://pandas.pydata.org/

6 http://www.numpy.org/

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 27 of 73

3.2.4. APIs and exposed outcomes

For the offline data cleansing a REST API interface is provided in order to enable the uploading

of the dataset that will be cleansed and provide the cleaned dataset once the cleansing process

is completed. The details of this interface are documented in Table 3-4.

Since the online data cleansing is performed with the help of other components, more

information is available in the corresponding sections.

Technical Interface

Reference Code CT#01

Function Upload the dataset that will be used in the cleansing process

Subsystems Offline Cleansing Tool

Type, State

RESTful-API

Endpoint URI

 <server url:5000>/cleaner/api/clean

Input Data

The data that will be used in the cleansing process in JSON format

Output Data

The cleansed data in JSON format

Table 3-4: Offline Cleansing tool technical interface

3.3. Anonymisation Tool

3.3.1. Overview

The anonymisation tool is an extensible, schema-agnostic plugin that allows real-time efficient

data anonymisation. The anonymisation tool has been utilised for offline, private usage but

offers the ability to output the anonymised data through a secured, web API. With emphasis on

performance, the anonymisation syncs with private database servers and executes

anonymisation functions on datasets of various sizes with little or no overhead. The purpose of

the anonymisation is to enable the potential value of raw data in the system by accounting for

privacy concerns and legal limitations.

The anonymisation process is optional to the AEGIS data flows and the tool is external to the

core AEGIS platform, residing where the data to be anonymised are located. This decision

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 28 of 73

ensures that no potentially sensitive data leave company premises, i.e. by-design eliminates any

vulnerability risks entailed in uploading the initial eponymised, thus sensitive, data to the

platform. Therefore, the AEGIS anonymisation solution will be used offline.

The main functionalities of the anonymisation tool are as follows:

- Connection to various data sources, including PostgreSQL, MySQL and csv files.

- Provision of anonymisation alternatives (generalisation, k-anonymity, pseudonimity),

depending on the data schemas, the data values and the user’s intended usage of the

anonymised dataset.

- Export of anonymised data in files and as RESTful services, if desired.

Overall, the tool will help the user generate an anonymised dataset as an output, making sure

that the individual sensitive records or subjects of the data cannot be re-identified.

Figure 3-5: Data anonymisation sequence diagram

Updates from V1.0:

Added support for csv files for data input and output.

3.3.2. List of microservices

The anonymisation tool, i.e. the AEGIS Anonymiser, comprises two microservices which are

orchestrated towards the execution of the anonymisation workflow. The first microservice

(Mapping Service) includes the functionalities provided by the Anonymisation Configurator

and Anonymisation Engine shown in Figure 3-5. In the same figure, the Data Exporter

corresponds to the second microservice, i.e. the Exporter Service. The Anonymiser Interface

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 29 of 73

orchestrates the two microservices towards applying the anonymisation process and constitutes

the interaction point with the user where required.

Component Name Microservice Name Functionalities

Anonymiser Mapping Service  Connect to a database as data source

 Read a csv file as data source

 Provide anonymisation alternatives

(e.g. generalisation, pseudonimity)

per field

 Apply the selected anonymisation

action

Exporter Service  Provide the anonymised dataset

through a REST API

 Save the anonymised dataset as csv

file

Table 3-5: Anonymisation Tool list of microservices

3.3.3. Technologies to be used

The anonymisation tool is based on Anonymiser, an anonymisation and persona-building tool,

developed in the context of the European project CloudTeams.

The tool performs a type of generalisation, which can be used to achieve k-anonymity. It allows

users to customise the level of anonymisation per data field, i.e. sensitive data fields can be

completely stripped out or suppressed from the output with asterisks or can be generalised. With

the generalisation mapping, individual values of input data fields are replaced by a broader

category. For example, the value '15' of the attribute 'Age' may be replaced by ' ≤ 18', the value

'23' by '20 < Age ≤ 30'. The user may then apply a threshold (k) on the minimum number of

entries with the same value, thus ensuring k-anonymity. A pseudonimity functionality is also

available to hide personal information and all data fields can be masked with ranged data.

The original tool is written in Python, using the Django web framework. These technologies

will be also used to deliver the necessary updates and extensions in order to support the AEGIS

anonymisation requirements. Specifically, the tool is extended to support csv files as data

sources.

As the anonymisation tool is not integrated with the other AEGIS components but only offers

limited interaction points, there is a flexibility in diversifying the provided anonymisation

solution. Hence, in the course of the project, the tool is extended and adapted to the project’s

requirements, but other open-source solutions may be also considered and evaluated, e.g. ARX,

as complementary/supplementary tools.

Updates from V1.0:

No updates

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 30 of 73

3.3.4. APIs and exposed outcomes

The outcome of the Anonymisation tool is available through a REST API, documented in the

following table.

Technical Interface

Reference Code AZ#01

Function Retrieve the anonymised data

Subsystems None / Standalone API

Type, State

RESTful-API

Endpoint URI

 <server url>: anonymizer/api/<secret key>/<parameters>

Input Data

Secret key:

The secret access key generated for the user through the Anonymiser’s user interface

Parameters:

Parameters for the data to be returned, including limit, offset, filters on properties and

count

Output Data

The anonymised data in JSON format

Table 3-6: Anonymisation tool technical interface

3.4. Brokerage Engine

3.4.1. Overview

The AEGIS Brokerage Engine has been modified to include both elements of the Data Policy

and the Business Brokerage framework, while initial, generic models for those frameworks

have been defined in order to roll-out a proof-of-concept implementation of the engine, that

will be finalised after the delivery of D2.3 which will document the final models of the above

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 31 of 73

mentioned frameworks, and will identify specific attributes that would be transferred to

implementation and will be used by the engine to offer the features chosen by the consortium.

As identified above and mentioned in the previous deliverable, the Brokerage Engine includes

both the Policy and Business Broker entities as shown in the next figure. In this context, the

engine listens to activities that are to be performed on the AEGIS Cluster and the Data Store to

prepare the Distributed Ledger Network records. These refer to adding new users on the cluster,

which are also added to the ledger using the “Participant Registrant” microservice and to

registering Assets on the Data Store, which are added to the ledger using the “Asset Registrant”

microservice. Upon a transaction request, the “Transaction Checker” microservice checks each

artefact’s metadata to conclude if a certain operation is possible. The first checks take place on

the AEGIS Data Store, and the Brokerage Engine, in case the initial checks are ok, checks

against its ledger to see whether a condition applies that does not permit the operation for the

data artefact under observation. Finally, a successfully concluded transaction is marked on the

ledger using the “Transaction Registrant” microservice.

Figure 3-6: Brokerage Engine sequence diagram

Updates from V1.0:

The main updates from V1.0 have to do with the design and the deployment of the DLT

network that has been optimised and has been released as a set of (Docker) containers to be

deployed as a core module to be co-hosted in the core AEGIS platform, and also be able to

allow easy set-up and deployment of further nodes that will strengthen the networks integrity

and credibility.

3.4.2. List of microservices

The microservices of the Brokerage Engine are tasked with the storage, checking and updating

of data in the AEGIS Distributed Ledger network.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 32 of 73

Component Name Microservice Name Functionalities

Brokerage Engine Participant Registrant  Listens to the registration facility of

AEGIS

 Registers the AEGIS users as

participants of the Brokerage Engine

of the AEGISDL network

Asset Registrant  Communicates with the Harvester and

listens to datasets storing

 Communicates with the Visualiser

and listens to visualisations storing

 Communicates with the Algorithm

Execution Container and listens to

analyses storing

 Registers assets in the AEGIS

Distributed Ledger network

Transaction Checker  Checks transaction details against

details stored on the AEGIS

Distributed Ledger

Transaction Registrant  Registers transactions in the

Distributed Ledger

 Updates the “wallets” of the

transaction participants

 Exposes executed transactions

through a REST API

Table 3-7: Brokerage engine list of microservices

3.4.3. Technologies to be used

The prototype of the AEGIS Brokerage engine builds on top of the of Hyperledger Fabric7

framework and provides an API that is consumed by the AEGIS platform for providing the

interconnection between the core platform and the Brokerage Engine. The models of the

Blockchain engine have been constructed based on the AEGIS DPF presented in deliverable

D2.1, while Hyperledger Composer8 is being used for testing and further optimising the overall

engine, and for providing an interface to easily manage the overall network that has been

deployed.

Updates from V1.0:

No change in technologies from the ones used in V1.0 has taken place

7 https://www.hyperledger.org/projects/fabric

8 https://hyperledger.github.io/composer/

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 33 of 73

3.4.4. APIs and exposed outcomes

The following tables present the most crucial interfaces used by the Brokerage Engine which

are necessary for the interconnection with the AEGIS core platform.

Technical Interface

Reference Code BE#01

Function User

Subsystems Brokerage Engine

Type, State

RESTful-API

Indicative Endpoints

GET /api/User

POST /api/User

GET /api/User/{id}

Get a list of all users registered with the brokerage engine

Add a user to the brokerage engine

Get user’s details

Input Data (for POST)

{

 "$class": "eu.aegis.User",

 "uid": "string",

 "balance": "0.0",

 "externalAssets": [

 {}

]

}

Table 3-8: Brokerage Engine technical interface 1

Technical Interface

Reference Code BE#02

Function AEGISAsset

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 34 of 73

Subsystems Brokerage Engine

Type, State

RESTful-API

Indicative Endpoints

GET /api/AEGISAsset

POST /api/AEGISAsset

GET /api/AEGISAsset /{id}

Get a list of all AEGIS assets

Add an asset to the brokerage engine

Get asset’s details

Input Data (for POST)

{

 "$class": "eu.aegis.AEGISAsset",

 "aid": "string",

 "type": "Dataset",

 "cost": "0.0",

 "status": "Free",

 "exclusivity": "None",

 "contractText": "string",

 "owner": {}

}

Table 3-9: Brokerage Engine technical interface 2

Technical Interface

Reference Code BE#03

Function BuyAsset

Subsystems Brokerage Engine

Type, State

RESTful-API

Indicative Endpoint

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 35 of 73

POST /api/BuyAsset

Buy an asset

Input Data

{

 "$class": "eu.aegis.BuyAsset",

 "buyer": {},

 "relatedAsset": {},

 "transactionId": "string",

 "timestamp": "2018-03-21T10:10:29.343Z"

}

Table 3-10: Brokerage Engine technical interface 3

Technical Interface

Reference Code BE#04

Function ChangeAssetCost

Subsystems Brokerage Engine

Type, State

RESTful-API

Indicative Endpoint

POST /api/ChangeAssetCost Change the cost of an AEGIS asset

Input Data

{

 "$class": "eu.aegis.ChangeAssetCost",

 "newCost": 0,

 "relatedAsset": {},

 "transactionId": "string",

 "timestamp": "2018-03-21T10:10:29.343Z"

}

Table 3-11: Brokerage Engine technical interface 4

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 36 of 73

Technical Interface

Reference Code BE#05

Function ChangeAssetStatus

Subsystems Brokerage Engine

Type, State

RESTful-API

Indicative Endpoint

POST /api/ChangeAssetStatus Change the status of an AEGIS asset (i.e. free, paid etc)

Input Data

{

 "$class": "eu.aegis.ChangeAssetStatus",

 "newStatus": "Free",

 "relatedAsset": {},

 "transactionId": "string",

 "timestamp": "2018-03-21T10:10:29.356Z"

}

Table 3-12: Brokerage Engine technical interface 5

Technical Interface

Reference Code BE#06

Function ChangeExclusivity

Subsystems Brokerage Engine

Type, State

RESTful-API

Indicative Endpoints

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 37 of 73

POST /api/ChangeExclusivity Change the exclusivity of an AEGIS asset (i.e. none, lifetime

etc)

Input Data

{

 "$class": "eu.aegis.ChangeExclusivity",

 "newPeriod": "None",

 "relatedAsset": {},

 "transactionId": "string",

 "timestamp": "2018-03-21T10:10:29.368Z"

}

Table 3-13: Brokerage Engine technical interface 6

Technical Interface

Reference Code BE#07

Function LoadBalance

Subsystems Brokerage Engine

Type, State

RESTful-API

Indicative Endpoints

POST /api/LoadBalance Loads currency to the balance of a user

Input Data

{

 "$class": "eu.aegis.LoadBalance",

 "amount": 0,

 "user": {},

 "transactionId": "string",

 "timestamp": "2018-03-21T10:10:29.384Z"

}

Table 3-14: Brokerage Engine technical interface 7

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 38 of 73

3.5. AEGIS Data Store

3.5.1. Overview

The AEGIS Data Store has two distinct components; the HopsFS, which is the distributed file

system mainly used for storing large amounts of data, as well as, the Linked Data Store, which

is responsible for storing the metadata about the datasets.

3.5.2. HopsFS filesystem

The AEGIS Data Store component is responsible for storing data that were collected and

curated by the Harvester. A distributed file system approach was chosen for flexibility,

reliability, and scalability. The distributed file system will allow storing large amounts of data

while enabling access to the data from other AEGIS supported services such as the Query

Builder and the Visualiser. In particular, the distributed file system is primarily responsible for

storing large files, that is, files ranging from megabytes to terabytes in size. However, as seen

in many production Big Data clusters such as the ones at Yahoo and Spotify [1], it has been

observed that almost 20% of the files in the cluster are less than 4 KB in size and as much as

42% of all the file system operations are performed on files less than 16 KB in size.

Under the hood, AEGIS uses HopsFS as the main file system to store the data. HopsFS is a

reliable, highly scalable, and fault tolerant distributed file system. A file is stored as list of

blocks that is triple replicated for fault tolerance. Unlike HDFS that stores the file system

metadata in memory, HopsFS keeps all the file system metadata in an in-memory distributed

database providing bigger clusters with higher throughput.

Updates from V1.0:

Efficient Storage of Small files less than 64 KB.

3.5.2.1. List of microservices

HopsFS runs as a service in the AEGIS cluster where users can interact with it using the AEGIS

user interface and the REST API provided by Hopsworks. Under the hood, the AEGIS user

interface communicates with HopsFS using the client APIs.

Component Name Microservice Name Functionalities

HopsFS File System

(Client/Web APIs)

 Perform file system operations such as

create, mkdir, delete, append, etc

Table 3-15: HopsFS list of microservices

3.5.2.2. Technologies to be used

The AEGIS platform uses a file system, HopsFS, as the main store for Big Data. HopsFS is a

drop-in replacement for Hadoop Distributed File System (HDFS). HopsFS is designed

primarily to store large files, however, as reported most of production clusters contains a large

number of small files (< 64KB). Therefore, we have extended HopsFS to efficiently manage

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 39 of 73

large number of small files using a tiered storage solution. The tiers range from the highest tier

where an in-memory database stores very small files (<1 KB), to the next tier where small files

(<64 KB) are stored in Solid State Drives (SSDs), also using the database, to the largest tier,

the existing Hadoop block storage layer for large files. Our approach is based on extending

HopsFS with an inode stuffing technique, where we embed the contents of small files with the

metadata and use database transactions and database replication guarantees to ensure the

availability, integrity, and consistency of small files.

Updates from V1.0:

Efficient Storage of Small files less than 64 KB.

Some Bug Fixes for performance and usability.

3.5.2.3. APIs and exposed outcomes

The small files are handled transparently by the client and the file system without involving the

users. It is recommended to interact with the data in HopsFS from the AEGIS user interface.

However, HopsFS can be accessed using the command line, Java client APIs, and RESTful

APIs.

Technical Interface

Reference Code EDS#01

Function HopsFS FileSystem

Subsystems HopsFS

Type, State

RPC, Synchronous

API Documentation

 https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/fs/FileSystem.html

Input Data

 Unsupported Calls:

 (get|set|unset)StoragePolicy

 (get|set|list|remove)XAttr : At the moment adding extended metadata is done

from Hopsworks

 (set|get|remove)Acl

 (create|rename|delete)Snapshot

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 40 of 73

Output Data

Table 3-16: AEGIS Data Store technical interface 1

Technical Interface

Reference Code EDS#02

Function HopsFS WebHDFS

Subsystems HopsFS

Type, State

RESTful-API, Synchronous

API Documentation

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html

Input Data

 Unsupported Call:

 (set|get|unset)StoragePolicy

 (get|set|remove)XAttr

 (set|get|remove)Acl

 (create|rename|delete)Snapshot

Output Data

Table 3-17: AEGIS Data Store technical interface 2

3.5.3. AEGIS Linked Data Store

The AEGIS Linked Data Store is responsible for storing the metadata associated with a

particular dataset within the AEGIS platform. These metadata pose the foundation of the

processing of the data within the AEGIS platform, since they offer detailed information about

the semantic and syntax of the data. This allows choosing appropriate analysis and visualisation

methods. The metadata will be stored as Linked Data, using the AEGIS ontology and

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 41 of 73

vocabulary9, which is based upon the DCAT-AP specifications. It will be developed as a service

and integrated into the AEGIS Data Store.

Updates from V1.0:

The integration concept of the AEGIS Linked Data Store was revised. It will be available as

a separate service and integrated via appropriate hooks within the AEGIS platform. This will

allow a synchronisation of data and metadata. In addition, the interface of the service will be

used from the AEGIS annotator, which will be integrated into the front-end of the platform.

Besides the core functionality of managing the metadata associated with particular data the

AEGIS Linked Data Store will offer a recommendation functionality. Based on given criteria,

similar or relevant datasets will be returned. These criteria may include every available

metadata, like the data structure, the spatial information or terms of use.

3.5.3.1. List of microservices

The AEGIS Linked Data Store is a combination of two microservices.

Component

Name

Microservice Name Functionalities

AEGIS Linked

Data Store

MetadataService  Creating and modifying the

Linked Data metadata

 Transform simple JSON to

Linked Data

 Recommendation engine for

getting similar or suitable

additional data

OntologyManagementService  Management of the AEGIS

Linked Data vocabularies and

ontologies

 Exposes reusable namespaces

for generating the metadata

Table 3-18: AEGIS Linked Data Store list of microservices

9 https://github.com/aegisbigdata/aegis-ontology

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 42 of 73

3.5.3.2. Technologies to be used

Updates from V1.0:

The used technologies were specified in more detail and already applied in the first prototype

of AEGIS Linked Data Store. The service is written in Java. The core technologies are:

 Apache Jena Fuseki Triplestore

 Apache Jena Library

 Play Framework 2.6

 LinDA10

3.5.3.3. APIs and exposed outcomes

The AEGIS Linked Data Store will be exposed as one artefact and service.

Technical Interface

Reference Code AL#01

Function Managing the AEGIS metadata

Subsystems Triplestore

Type, State

RESTful-API, SPARQL endpoint

Endpoint URI

 http://aegis-metadata.fokus.fraunhofer.de/ (Testing system)

Input Data

 Metadata as JSON or RDF

Output Data

Metadata as JSON or RDF

Table 3-19: AEGIS Linked Data Store technical interface

10 http://linda-project.eu/

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 43 of 73

3.6. AEGIS Integrated Services

3.6.1. Overview

The AEGIS platform provides a multi-tenant data management and processing services for Big

Data. The multi-tenancy behaviour allows different users and services to securely and privately

access and process their data. The AEGIS platform enables users to share their data with other

users on the platform and allow access for specific services. In addition, users can use different

data processing services that are supported by the platform to process and visualise their data.

Under the hood, the data are mainly stored in the AEGIS Data Store; however, the AEGIS Data

Store APIs are kept hidden from users. Instead, the AEGIS platform provides a Project/Dataset

service to allow users to upload/download, explore, and do analysis on their data in a secure

way without interacting with the AEGIS Data Store directly. To ensure secure and private

access to the data, each user has an x509 certificate per project as well as a specific project user

for the Data Store per project. The certificate has a CN field which contains the project specific

username and that gives the platform the possibility to provide application level authorisation

at the RPC server. For instance, any application executed within a YARN container will access

the Data Store (HopsFS) as the user running this application. YARN acts as a proxy user for

the user and accesses HopsFS (HDFS) through user impersonation. Thus, all accesses are seen

as being done by the running user and storage access is limited to the files that can be accessed

by this user. Moreover, each user has a specific project user for each of the projects that he/she

can access. This means that any YARN application can only access files that are accessible for

the running project and cannot normally access files cross projects, even if the project belongs

to the same user as the one running the application. All applications running on top of YARN

such as Spark, will be governed by the same storage access as described for a YARN container.

Under the hood, AEGIS builds upon Hopsworks to provide integrated support for different

services such as interactive notebooks with Zeppelin and Jupyter that are used mainly by the

Query Builder, Algorithm Execution Container and the Visualiser components. Other services

such as Kafka, and ELK stack are also supported.

Updates from V1.0:

Some bug fixes for performance and usability.

Some bug fixes and improvements for certificates handling.

3.6.2. List of microservices

Hopsworks provides different integrated services that interact with each other and with users

using the Hopsworks REST API.

Component Name Microservice Name Functionalities

Users Auth  Provides authentication functionality

for users to login, logout, register, and

recover password

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 44 of 73

User  Provides information about the current

user

Messages  Provides an inbox functionality for

users where they receive/send share

requests for Datasets

Projects Projects  Provides information about the projects

for a user, as well as details on each of

the projects such as list of datasets,

description, and team members

Datasets  Provides information about the datasets

for a user.

 It provides upload, download, and

explore functionalities on the data

Table 3-20: AEGIS Integrated services list of microservices

3.6.3. Technologies to be used

AEGIS builds upon Hopsworks to provide multi-tenant data management and processing

services for BigData. Hopsworks is a project-based multi-tenant platform for secure

collaborative data science that runs on top of HopsFS. It provides an integrated support for

different data parallel processing services such as Spark, Flink, and MapReduce, as well as a

scalable messaging bus with Kafka, and interactive notebooks with Zeppelin and Jupyter.

Hopsworks introduces new abstractions called Projects and Datasets that provide the basis for

which users can securely upload and privately process data and securely collaborate with other

users on the platform. A Dataset is a directory subtree in HopsFS that can be shared between

projects. A Project is a collection of datasets, users, and notebooks (Zeppelin, Jupyter). In the

AEGIS platform, Jupyter is mainly used by the Query Builder and the Visualiser components

of the platform, while Zeppelin is mainly used by the Algorithm Execution Container. Most of

the updates are bug fixes for usability and performance of the platform and the certificates

handling.

Updates from V1.0:

Some bug fixes for performance and usability.

Some bug fixes and improvements for certificates handling.

3.6.4. APIs and exposed outcomes

The AEGIS platform APIs have not changed since most of the updates are bug fixes for

platform usability and performance that will not require change of user facing APIs.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 45 of 73

3.6.4.1. Users API

Hopworks provides a RESTful API to create users and to login to the platform. As documented

in https://app.swaggerhub.com/apis/maismail/hopsworks-user-api/1.0.0

3.6.4.2. Projects and Datasets

Once logged in, users can create Project/Dataset, add member to a Project, share their Dataset,

or upload/download/analyse their data. The RESTful API is documented in

https://app.swaggerhub.com/apis/maismail/hopsworks-core-api/1.0.0

3.6.4.3. Interactive Notebooks

Users can create an interactive notebook in their Project using Zeppelin and Jupyter. Zeppelin

and Jupyter are web-based notebooks that allow users to interactively analyse and visualise

their data using different frameworks such as Spark. They only provide some basic charts;

however, different JavaScript libraries could be loaded to support a more complex visualisation

or the AEGIS Visualiser component could be utilised.

3.7. Query Builder

3.7.1. Overview

Query Builder is the component that provides the capability to interactively define and execute

queries on data available in the AEGIS system. Query Builder is primarily addressed to the

AEGIS users with limited technical background, but is potentially useful for all, as it will

simplify and accelerate the process of retrieving data and creating views on them, which could

be then saved as new datasets or used as input for more high-level AEGIS tools, like the

Visualiser and the Algorithm Execution Container.

The tool is developed as interactive Notes inside Apache Zeppelin and Jupyter notebooks,

offering intuitive data browsing, selection and manipulation facilitated through smart metadata

usage in the background. As explained in section 3.2, the functionalities of Query Builder are

not limited to the retrieval and combination of various datasets, but also support certain

necessary processing tasks that cannot be known a priori, in terms of data filtering and

cleansing. Thus, the tool incorporates functionalities that may conceptually be more relevant to

the data cleansing tool. However, by integrating them in the current tool, there is a two-fold

advantage: (a)the user is offered a more intuitive workflow, since data cleansing requirements

may be not known prior to and independently of the query creation process and (b)the

computational power of the AEGIS system is fully leveraged, as cleansing may be a very heavy

process when dealing with big data.

The high-level functionalities to be offered by the Query Builder user interface are as follows:

 Dataset browsing powered by the available metadata

 Dataset selection and data preview

 Dataset merging and appending (metadata-enhanced)

 Data filtering, both row-wise and column-wise (metadata-enhanced)

https://app.swaggerhub.com/apis/maismail/hopsworks-user-api/1.0.0
https://app.swaggerhub.com/apis/maismail/hopsworks-core-api/1.0.0

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 46 of 73

 Various data manipulation and cleansing tasks, e.g. value replacement, fill-in of null

values, changing column names, combining columns, removing duplicate entries etc.

(metadata-enhanced)

 Save created view on data as new dataset

 Export the Python code that can be used to achieve the same data manipulation results

that were created through the user’s interaction with the UI

 Provide the Spark/Pandas DataFrame that corresponds to the created data view as input

to Visualiser and/or Algorithm Execution Container

 Provide the Spark/Pandas DataFrame that corresponds to the created data view to the

tech-savvy user that wants to directly use it in his/her code

The annotation “metadata-enabled” that is used in the above list refers to the fact that Query

Builder leverages the metadata available for each file in the AEGIS system in order to provide

its enhanced data selection and manipulation capabilities, i.e. enabling/disabling certain data

merging and filtering options according to the data schema and also allowing the user to

perform more targeted dataset exploration and retrieval based on the available metadata.

Figure 3-7: Query building and execution workflow

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 47 of 73

Updates from V1.0:

Query Builder is extended to offer simple data cleansing functionalities, such as replacing

values, filling-in null values, removing duplicate entries etc.

3.7.2. List of microservices

Query Builder is one of the components developed inside a Notebook, as explained in Section

2.3. As such, the microservices of which it is composed correspond to specific functionalities

also implemented inside the same Note of the Notebook. The microservices interact directly

through Python code, as, in the normal workflow, they are all executed as parts of the same

underlying process/job. Hence, the distinction of the five underlying microservices mostly

corresponds to the conceptually separate tasks that are performed by each of them and the fact

that in another context, i.e. externally to the Notebooks, they would constitute different services.

The first and last microservices (namely the Dataset Selector Service and the Query Exporter

Service) correspond directly to sub-components of the Query Builder, which are shown in the

Sequence diagram in Figure 3-7. The other three microservices (Cleanser Service, Merger

Service and Dataset Creator Service) are integrated under the Data view creator part of the

Query Builder (also shown in the corresponding sequence diagram).

Component Name Microservice Name Functionalities

Query Builder Dataset Selector Service  Interact with Data Harvester and

Annotator to get the list of datasets and

all related information accessible by the

current user

 Provide the available datasets as a list

for the user to directly select and

through a faceted search widget to

progressively narrow down results

 Acquire the list of available and

accessible datasets from HopsFS of

AEGIS Data Store

 Provide informative metadata for each

available dataset

 Adjust the list of datasets shown to the

user based on the performed choices

and provide semantically enhanced

suggestions

 Retrieve the selected dataset from the

filesystem and load it into a DataFrame

Dataset Cleanser Service  Remove/ Replace missing values

 Perform data interpolation

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 48 of 73

 Provide a preview of the applied

actions

 Provide aggregations and other

statistics that help examine data

integrity

 Apply rule-based data transformations

Dataset Merger Service  Merge/Join datasets

 Perform approximate joins

 Dataset Creator Service  Apply aggregations on datasets

 Select/Drop columns

 Apply value replacing

 Rename columns

 Perform data interpolation

 Apply selectors/ filters to dataset to

refine the retrieved data

 Save a dataset as a file in the

filesystem

 Provide a preview of the applied

actions

 Load created dataset in a DataFrame

Query Exporter Service  Translate data

processing/filtering/merging actions

performed so far into Python code

that can be used externally to the tool

to produce the same results

 Export dataset to new file

Table 3-21: Query Builder list of microservices

3.7.3. Technologies to be used

Query Builder is developed as a preconfigured Note in the Apache Zeppelin Notebook and in

Jupyter Notebook. Specifically for Zeppelin, its user interface is developed using JavaScript

and AngularJS, whereas the backend functionalities are developed mainly in Python and

PySpark. For certain tasks, mostly related to Zeppelin’s internal way of sharing variables across

paragraphs of different programming languages, Scala is also used. The Query Builder version

created for Jupyter is implemented in Python and PySpark for the data processing and

JavaScript for the user interface.

In order to provide effective big data querying and processing functionalities, Query Builder

leverages the power of Apache Spark, which is available inside AEGIS Integrated Services

(presented in section 3.6).

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 49 of 73

Updates from V1.0:

Although the initial decision was to utilise Apache Zeppelin for the implementation of the

Query Builder, a transition to the Jupyter Notebook was decided, as experimentation proved

it to be a more stable environment for building the required extensions. The Zeppelin version

remains available in the platform; however it is expected that as the project progresses, the

Jupyter version of Query Builder will be the only one used, due to its superior performance,

which is related to Jupyter features.

3.7.4. APIs and exposed outcomes

Query Builder has two types of exposed outcomes:

1. The Python code that corresponds to the actions performed by the user through the tool’s

user interface. The generated code can be used then by the user independently in order

to achieve the same results without having to repeat the performed steps and can also

be directly edited by more tech-savvy users.

2. The DataFrame that contains the data view that was created through all the data

manipulation tasks performed by the user. The DataFrame can be passed to the

Visualiser and the Algorithm Execution Container or be directly manipulated inside

Zeppelin/Jupyter through the user’s custom code.

Although these are the main outcomes of the tool, there are also two more possible outcomes

that may be produced through the user’s usage of the tool:

1. New files may be created and stored in the local filesystem

2. The Zeppelin/Jupyter note that is created may itself serve as an outcome if the user

chooses to save and keep it for future reference.

3.8. Visualiser

3.8.1. Overview

The Visualiser is the component enabling the visualisation capabilities of the AEGIS platform

for the output of the querying and filtering results coming from the Query Builder as well as

the output of the analysis results as produced from the Algorithm Execution Container. More

specifically, the Visualiser is undertaking the necessary actions to address the advanced

visualisation requirements of the AEGIS platform by offering a variety of visualisation formats,

which span from simple static charts to interactive charts offering several layers of information

and customisation.

The Visualiser is implemented as predefined Jupyter notebook, which is part of the AEGIS

Integrated Services enabling the interactive web-based notebook functionality in the AEGIS

platform. The Visualiser component consists of a set of functionalities which support the

execution of the visualisation process. This set of functionalities includes the dataset selection,

the dataset preview generation, the visualisation type selection, the visualisation configuration,

the visualisation generation and the interactive dashboard. In the following list, the

functionalities of the Visualiser are elaborated:

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 50 of 73

 Dataset selection: The list of available datasets within the project are presented to the

user for selection11.

 Dataset preview generation: Upon selecting the dataset, a preview of the dataset is

displayed11.

 Visualisation type selection: The list of available visualisations for the selected dataset

is presented to the user for selection.

 Visualisation configuration: Based on the visualisation type selected for the desired

dataset a set of parameters are displayed to the user to trim the visualisation.

 Visualisation generation: Once the visualisation type along with the parameters are set

for the desired dataset, the visualisation generation is triggered. The results can be used

in the current session for creating an interactive dashboard.

 Dashboard: The result of the visualisation generation is presented to the user into an

interactive dashboard. This dashboard can contain also multiple generated visualisation

results.

Figure 3-8 depicts the execution of the visualisation process.

Figure 3-8: Sequence diagram of the visualiser component

In the first version of the Visualiser a variety of visualisation types is supported and will be

further extended in the upcoming versions. The list of supported visualisation types includes

11 This functionality will be obsolete once the AEGIS notebooks are integrated into one holistic notebook, as

described in Section 2.3. Within this holistic notebook, the Visualiser will receive the input for visualisation

directly from the Query Builder or the Algorithm Execution Container.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 51 of 73

scatter plot, bar chart, pie chart, bubble chart, time series, heat map, map, box plot and

histogram.

Updates from V1.0:

No updates in regards to the design of the Visualiser as documented in D3.2. In the upcoming

versions of the Visualiser the list of available visualisation types will be further extended and

the support for multiple datasets will be explored.

3.8.2. List of microservices

The Visualiser component, as explained in Section 2.3, is developed as a predefined Jupyter

notebook and it is following the microservices architecture. The designed microservices are

enabling the advanced visualisation capabilities of the AEGIS platform and are orchestrated

towards the execution of the visualisation process, as described in the previous section. Each

microservice is assigned with a specific functionality within the visualisation process and is

implemented as a note in the same notebook, interacting through Python code.

In particular, the Dataset Selection and the Preview Generator, as shown in Figure 3-8, are

undertaken by DatasetSelectionService microservice. Additionally, the microservice

VisualisationSelectionService is responsible for the Visualisation Type Selection and the

Visualisation Configuration. The Visualisation Generation is handled by the

ChartBuildingService and ChartCreationService microservices. Finally, the microservice

VisualisationService is handling the Dashboard functionality.

In total five microservices will be developed and are described in the following table:

Component

Name

Microservice Name Functionalities

Visualiser DatasetSelectionService12  Acquire the list of available and

accessible datasets from HopsFS

of AEGIS Data Store

 Provide the list of available

datasets for selection

 Provide a preview of the selected

dataset

VisualisationSelectionService  Provide the list of available

visualisation types

 Provide and manage the

parameters (such as axis

12 This microservice will be obsolete once the AEGIS notebooks are integrated into one holistic notebook, as

described in Section 2.3. Within this holistic notebook, the Visualiser will receive the input for visualisation

directly from the Query Builder or the Algorithm Execution Container.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 52 of 73

variables and titles) for each

visualisation type

ChartBuildingService  Prepare the data in the

appropriate format based on the

selection of the visualisation type

and set parameters

ChartCreationService  Generate the appropriate

visualisation based on the data,

visualisation type and parameters

VisualisationService  Display the generated

visualisation as a UI component

Table 3-22: Visualiser list of microservices

3.8.3. Technologies to be used

As already described the Visualiser component is implemented as a predefined Jupyter

notebook, a multipurpose interactive web-based notebook service for running Spark code on

Hops YARN, which is part of the AEGIS Integrated Services. Jupyter offers functionalities for

data visualisation out-of-the box in addition to data ingestion, data discovery and data analytics

functionalities. In addition to Jupyter, the user interface is implemented using Python,

JavaScript and HTML with the support of two Python libraries, namely the Folium13 and the

highcharts14 libraries. These specific libraries were selected as they provide state-of-the-art

visualisations specialised in charts and data visualisation.

Updates from V1.0:

Although the initial decision was to utilise Apache Zeppelin for the implementation of the

Visualiser, it was decided to utilise Jupyter instead. The reason for this transition was the list

of functionalities and features offered by Jupyter that facilitate the implementation of the

Visualiser, as well as the stability and performance of the Jupyter service compared to the

Zeppelin service. As both notebooks are Python based, the transition was executed with

minimal effort.

In addition to the transition to a Jupyter notebook, two of the state-of-the-art charting libraries

in Python, Folium and highcharts, were used to enable advanced visualisations.

13 http://folium.readthedocs.io/en/latest/

14 https://www.highcharts.com/

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 53 of 73

3.8.4. APIs and exposed outcomes

The Visualiser is providing as an exposed outcome the visualisation generated. The Visualiser

is generating the visualisation tailored by the user, taking as input either the results of the query

processing as facilitated by the Query Builder or the analysis results that are provided as the

outcome of Algorithm Execution Container. The produced visualisation can be saved as an

image or introduced in an interactive dashboard.

3.9. Algorithm Execution Container

3.9.1. Overview

Analytics in AEGIS are to be constructed with the use of the Algorithm Execution Container,

which is a module that runs on top of a web-notebook and can be used either on its own, or as

a follow-up to the Query Builder notebook.

With the aim to provide extra functionalities to both novel and non-expert users, this component

features a UI that consists of an algorithm selection template, offering to users some basic

information regarding each algorithm available in the big data analysis platform of AEGIS.

Initially, the user has to select a Dataset which will be the basis for the analysis, and the “Dataset

Selector” microservice is triggered to retrieve the dataset from the AEGIS Data Store.

Following this, the user proceeds with the selection of an algorithm (out of an algorithm family),

specific parameters of each algorithm are presented, to provide to users the option to fill in all

variables of the algorithm and perform an analysis over the platform. These actions are collected

by the “Analysis Trigger” microservice, which is composed of a series of nested or interlinked

notebook paragraphs and that is passing over the analysis request to the underlying Spark

engine. The output of an analysis is then generated by the Algorithm Execution Container and

the performance of each algorithm is being previewed in the same notebook and is saved back

into the AEGIS Data Store using the “Analysis Exporter” microservice.

Moreover, the execution of a new algorithm using the outputs of the previously conducted

analysis may lead to the enablement of “chainable” analyses.

The current design of the Algorithm Execution Container will support the following categories

of analyses:

 Dimensionality Reduction/Feature Extraction/Selection

 NLP Functions

 Recommenders

 Clustering

 Classification/Regression

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 54 of 73

Figure 3-9: Algorithm Execution Container sequence diagram

Updates from V1.0:

Updates from V1.0 include the way to load and save datasets into the filesystem, and the

definition of the analysis outputs that are to be stored as well. Furthermore, chainable

execution of algorithms has been made available, by repeatedly running algorithms as

sequence after previous analyses.

3.9.2. List of microservices

The Algorithm Execution Container is a component that is developed inside a Zeppelin

notebook and is part of the overall analysis functionality of the platform. The microservices

interact with the backbone through Python code.

Component Name Microservice Name Functionalities

Dataset Selector  Interacts with the AEGIS storage and

directly selects a dataset by its URI

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 55 of 73

Algorithm

Execution

Container

Analysis Trigger  Selects the analysis to be performed

by the user

 Passes the analysis parameters to the

analytics function

 Triggers the analysis to be performed

in the AEGIS Spark

Analysis Exporter  Stores the analysed dataframe in the

AEGIS storage point

 Stores the analysis outputs in the

AEGIS storage point

Table 3-23: Algorithm Execution Container list of microservices

3.9.3. Technologies to be used

The Front-End of the Algorithm Execution Container is based on AngularJS framework

running on top of an Apache Zeppelin notebook as already pre-defined paragraphs that present

the UI to the user. MLlib is the core algorithm library to be supported. Due to certain constrains

in the interoperation between AngularJS and MLlib under the environment of Zeppelin, Scala

is being used to configure and execute the algorithms that are selected by the user. Python is

being used as the language to interpret the paragraphs in Zeppelin.

Updates from V1.0:

No update in technology from version V1.0

3.9.4. APIs and exposed outcomes

No APIs are being provided by this component, as it directly interacts with the Zeppelin

Notebook. The pre-generated Python code that corresponds to the actions performed by the user

through the tool’s user interface can be used then by the user independently in order to achieve

the same results without having to repeat the performed steps and can also be directly edited by

more tech-savvy users. The outcomes of the component are passed back to the AEGIS storage

facility, if the user chooses to save and keep them for future reference.

3.10. AEGIS Front-End

3.10.1. Overview

The AEGIS Front-End, as shown in Figure 3-10, is the upper layer of the whole AEGIS

architecture, receiving and sending the outputs/inputs from/to the AEGIS API layer and from/to

the AEGIS Harvester/Annotator.

The first step to access the platform is the creation/authentication of an account. Then the user

will be able to browse the public assets (e.g. datasets, visualisations, etc.) according to the

following filters: most popular, latest, and offers, or to select a project from a menu which

includes the user and the public projects. Moreover, a new project can be created, with the

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 56 of 73

option to specify the related members. At this stage, users can be assigned the roles of data

owner/data scientist, with different permissions for the management of the projects/datasets. In

next release of the platform, the users’ roles could be reviewed according to the methodology

developed in D1.3.

The Front-End facilitates all the AEGIS components which have an interaction with the user

(e.g. Query Builder, Visualiser, Algorithm Execution Container). A common graphical

environment has been developed, according to the look and feel of the AEGIS institutional web

site, including direct links to the single web components corresponding to the AEGIS main

functionalities, here integrated in the form of notebooks. In particular, the main menu of the

AEGIS platform (see the figure below), for each project, presents the following items: Get

Started, Assets, Project Datasets, Query Builder, Analytics, Visualiser, Jupyter, Zeppelin,

Kafka, Jobs, Metadata Designer, Settings, Members. The applications related to Queries,

Visualisations and Analytics have been implemented within Apache Zeppelin or Jupyter in

form of notebooks.

Figure 3-10: Main menu from the AEGIS platform

Updates from V1.0:

 New look and feel developed, according to the AEGIS institutional web site.

 Improved management of user account creation.

 Minor adjustments in the home page

 New Visualisations functionality added

 New Query Builder functionality added

 Bugs fixing.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 57 of 73

3.10.2. List of microservices

A list of microservices will be developed in order to handle the selection of public assets (most

popular, latest, offers). In total three microservices will be developed and are described in the

following table:

Component Name Microservice Name Functionalities

Front-End GetMostPopularAssets  Return the sorted list of most

popular public assets (e.g.

datasets, projects, etc.)

GetLatestAssets  Return the sorted list of latest

public assets (e.g. datasets,

projects, etc.)

GetOffers  Return the sorted list of public

assets characterised by special

price conditions

Table 3-24: AEGIS Front-End list of microservices

3.10.3. Technologies to be used

The AEGIS Front-End is built on top of the Hopsworks platform. Hopsworks is a self-service

User Interface for Hops Hadoop, which introduces new concepts needed for project-based

multi-tenancy: projects, users, and datasets. All jobs and interactive analyses are run from the

HopsWorks UI and Apache Zeppelin or Jupyter Notebooks (iPython notebook style web

applications). While developing the AEGIS platform, a central role has been taken by the

notebook technology, providing the technology required to implement in particular the

following components: Query Builder, Visualiser and Algorithm Execution Container. Apache

Zeppelin and Jupyter are the selected notebook frameworks (more details in section 3.6).

Another important framework which has been used for the development of the graphical user

interface is AngularJS15.

AngularJS is a very powerful JavaScript based development framework to create Rich Internet

Application (RIA16). It is used mostly in Single Page Application (SPA17) projects. It extends

the HTML DOM with additional attributes and makes it more responsive to user actions.

AngularJS is open source, completely free and used by thousands of developers around the

world. It is licensed under the Apache License version 2.0. Applications written in AngularJS

are cross-browser compliant. AngularJS automatically handles JavaScript code suitable for

each browser and allows to implement the Model-View-Controller (MVC18) pattern on the

client side using JavaScript.

15 https://angularjs.org/
16 https://en.wikipedia.org/wiki/Rich_Internet_application
17 https://en.wikipedia.org/wiki/Single-page_application
18 https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 58 of 73

Updates from V1.0:

Usage of Jupyter notebooks.

3.10.4. APIs and exposed outcomes

No API will be provided in this version.

3.11. Holistic Security Approach

3.11.1. Overview

In the high-level architecture of the AEGIS platform the consortium identified the need for a

holistic security approach that should be incorporated throughout the AEGIS platform and that

will be applied in the whole lifecycle of the data exploitation safeguarding the security aspects

of data in storage, in transit and in use. It should be noted at this point that the holistic security

approach is not a standalone component, but rather a set of technologies and tools that are

utilised within the components of the AEGIS platform in order to enable cross-platform

security.

In the updated high-level architecture, as presented in D3.2, the main decision taken was the

adoption of the Hopsworks19 platform as the Big Data Processing Cluster of the AEGIS

platform. Hopsworks is providing out-the-box the HopsFS, a new implementation of the

Hadoop Filesystem (HDFS), covering the storage solution of the AEGIS platform. With respect

to the security aspect for data in storage HopsFS is offering advanced security with a plethora

of authentication mechanisms as well as data access control, data integrity and data consistency

mechanisms. HopsFS is making use of checksum to ensure security and integrity control of the

data in storage covering the envisioned by the consortium security aspect for data in storage. It

should be noted at this point that several other solutions, like the use Symmetric Encryption

Algorithms, Asymmetric Encryption Algorithms and Attribute-Based Encryption, have been

evaluated by the consortium in order to address the security, privacy and integrity of the data

stored in the AEGIS Data Store, however it was decided that those technologies are not ideal

for big data ecosystems due to efficiency problems that will introduce within the data analysis

process.

Concerning the security of data in transit or data in motion, which includes data transfer

between the Hopsworks services and clients either within the internal network or through the

internet, Hopsworks is providing data encryption via Secure Sockets Layer (SSL) and Transport

Layer Security (TLS) at the RPC layer offering the required security level as envisioned by the

AEGIS consortium. The third aspect of the holistic security approach is related to security of

“data in use” refers to data at-rest state, residing on one particular node of the network (for

example, in resident memory, swap, processor cache or disk cache). Although the AEGIS

19 http://hops.io

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 59 of 73

consortium has already identified a list of candidate technologies, such as Homomorphic

Encryption and Verifiable Computation, it was decided that the evaluation and adoption of such

technologies will be included in the upcoming releases of the AEGIS platform.

The holistic security approach also covers the security aspects for the technical interfaces (e.g.

REST) provided by the platform. This includes the interfaces provided by the components of

the platform in regards to the authorisation, authentication and access approval mechanisms.

Although Hopsworks REST API has already security mechanisms in place, more specifically

it has session-based security with JSession tokens and x509 certificates for the user of every

project, the consortium decided to introduce a token-based authentication with JSON Web

Token (JWT)20. JWT is an open standard (RFC 7519) that defines a compact and self-contained

way for securely transmitting information between parties as a JSON object.

For the introduction of the JWT as authentication and secure information exchange mechanism,

a series of actions is needed. At first, a new service will be introduced and will be integrated in

the backend of the AEGIS platform undertaking the token generation upon successful login, as

well as token verification. The methods included within this service implement the access

control mechanism that will be introduced in the AEGIS platform. In addition to the service, a

new filter method will be introduced. This filter will replace the existing filter method used for

the JSession tokens utilised currently in every technical interface and will perform the token

verification for each incoming request. The integration of this new mechanism is an ongoing

activity that will last till M24 when the new version of the AEGIS platform will be released.

The following table presents the holistic security approach of AEGIS platform for the data

lifecycle security as described above.

Security

Aspect

Proposed Approach Adopted Approach Remarks

Data in

Storage

Symmetric Encryption

Algorithms, Asymmetric

Encryption algorithms and

Attribute-Based

Encryption

HopsFS mechanisms

for authentication,

authorisation and

access control of

stored data.

Usage of checksums

for data integrity.

The proposed technologies

were evaluated and will not

be introduced for

performance and efficiency

reasons.

Data in

Transit

Secure Sockets Layer

(SSL) and Transport

Layer Security (TLS)

Hopsworks provides

SSL and TLS data

encryption and

authentication at the

RPC layer.

SSL and TLS encryption

are the de-facto standard in

the security of data in

transit.

20 JSON Web Tokens, https://jwt.io/

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 60 of 73

Data in

Use

Homomorphic

Encryption, Verifiable

Computation

Currently none of

the technologies has

been adopted

The evaluation and

adoption of the proposed

technologies will be

included in the upcoming

versions of the platform.

Technical

Interfaces

Token-based

authentication and

authorisation mechanism

with JSON Web Token

JSON Web Token

will be introduced.

The implementation and

integration of JSON Web

Token mechanism is an

ongoing activity.

Table 3-25: Holistic Security Approach summary

Updates from V1.0:

There are no updates on the design and specification of the holistic security approach. The

introduction of the JSON Web Token as an authentication and access control mechanism is

an ongoing activity that will last till M24 when the new version of the AEGIS platform will

be released.

3.11.2. Technologies to be used

The holistic security approach will be based on the following three technologies, one for each

aspect of the approach. Concerning the data in storage aspect the usage of checksum was

selected. Checksum is a small-sized datum derived as the outcome of the cryptographic hash

function or checksum algorithm on a block of data or file. This outcome is utilised to identify

data corruption errors or modifications and overall data integrity since even small changes will

produce a different outcome.

With regards to the data in transit or data in motion security aspect the SSL and TLS

cryptographic protocols are the de-facto standard for secure communication over the network.

It ensures the secure connection by eliminating the unauthorised read and modification of the

data in transit. TLS is an updated more secure version of SSL, introducing the symmetric

cryptography with unique keys based on a shared secret for each connection. Each

communicating parties is using a public-key to authenticate and the data integrity evaluation is

performed with the use of message authentication code.

For the security of the technical interfaces of the platform JSON Web token (JWT) will be

introduced for authentication and secure information exchange purposes. JSON Web Token

(JWT) is an open standard (RFC 7519) utilising digitally signed using JSON Web Signature

(JWS) and/or encrypted using JSON Web Encryption (JWE) JSON objects as a safe way to

represent a set of information between two parties. As a consequence, this token is composed

by a header, a payload and a signature. JWT is used for authentication purposes, as the token

produced during the login authentication is defining the access level for the routes, services and

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 61 of 73

resources of the platform. JWT can be also used for secure information transfer between

communication parties.

Updates from V1.0:

No updates in terms of used technologies.

3.11.3. API

Not applicable.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 62 of 73

4. USER INTERACTION WORKFLOWS

In the current section, the main workflows that facilitate the data-driven innovation in the PSPS

domains are presented, as documented in section of 4 of deliverable D3.2, with the necessary

adaptations based on the updates of the components of the AEGIS platform.

All workflows are focusing on the user perspective and the purpose of this section is to hide the

technical details on how the AEGIS components are interacting and on the internal processes

of each component but rather illustrate the provided functionalities of AEGIS platform. All

workflows are modelled in BPMN diagrams and on each workflow, a specific functionality is

presented involving one or more components described in section 3. By chaining and combining

these workflows, all AEGIS scenarios and identified user requirements are covered.

4.1. Sign-up and Login

The figure below shows the interactions between a user and the AEGIS user interface. A new

user can create a new account by providing his/her name and password, and then wait for admin

approval before being able to use the platform. In addition, a 2-factor authentication password

could be used if enabled.

Figure 4-1: Sign-up and Login workflow

4.2. Data import

4.2.1. Importing data for a new dataset

The figure below presents a workflow of user interaction with the AEGIS harvester for

registering a new dataset in AEGIS. The workflow shows the required user actions for

configuring the harvester for a dataset metadata registration/import as well as its data import

and transformation to the target format.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 63 of 73

Figure 4-2: Importing data and metadata and registering them as a part of a new

dataset

4.2.2. Anonymisation workflow

As explained in Section 3.3, anonymisation is performed offline, prior to uploading any

potentially sensitive data to the core AEGIS platform. Anonymisation may be an iterative

process, as several actions may be required until all personal information has been stripped off

the original dataset. The figure below shows the actions undertaken by the user in order to

anonymise their data through the provided anonymisation tool, prior to importing them to the

AEGIS web platform.

Figure 4-3: Data anonymisation workflow

4.2.3. Data cleansing workflow

As explained in section 3.2, AEGIS offers both online and offline cleansing functionalities,

which may span from simple value replacements to more complex and computationally intense

data manipulations. The offline data cleansing is performed through a dedicated AEGIS offline

tool that offers an intuitive data cleansing workflow which is presented in the following figure.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 64 of 73

Figure 4-4: Data cleansing workflow

Regarding the online data cleansing, due to the flexibility offered by the Notebooks, there is no

unique workflow to follow. However, the workflows that include the usage of Notebook-based

components (e.g. the ones in sections 4.3.2 and 4.6) provide some insights on the expected user

interaction.

4.3. Data and service exploration (search)

4.3.1. From the main AEGIS platform

The figure below presents the main actions the users can take to explore the data on the AEGIS

platform. The user can request all his/her projects and datasets, and navigate to any project or

dataset. Once in a dataset, the user can browse, upload, or download files.

Figure 4-5: Data and service exploration workflow

4.3.2. Using query builder

The following two figures show the user’s perspective when using query builder to find data

and create an appropriate dataset (more accurately create a view on selected data) to be fed into

analysis and/or visualisation or to be saved as a new dataset. The process of “creating an

appropriate dataset” includes also the cleansing functionalities that have been integrated in the

Query Builder (through the selection, configuration and application of the available filters).

Although the user primarily interacts with the Query Builder component, two more components

are utilised in the background. The AEGIS Linked Data Store to retrieve the metadata for the

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 65 of 73

available datasets, which offer valuable information to the user and facilitate the data selection.

The Brokerage Engine is involved in the dataset acquisition sub-process shown in the diagram,

which is an instance of the artefact sharing process described in Section 4.5 and is external to

the Query Builder utilisation process.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 66 of 73

Figure 4-6: Dataset exploration through query builder workflow

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 67 of 73

Figure 4-7: Data acquisition sub-process workflow

4.4. Data export from AEGIS

The figure below presents the different ways for the user to export their data from the AEGIS

platform. The user can download his/her files or share the whole dataset with other users within

AEGIS.

Figure 4-8: Data export workflow

4.5. Artefact sharing/reuse

The following figure shows the workflow for data sharing over the AEGIS platform. The

operation to be performed involves both the core AEGIS platform as well as the Brokerage

Engine, which will check if artefact sharing/reuse can be performed. At first level, the AEGIS

platform checks whether the operation at high level is permitted (e.g. if the data asset exists, if

the user has the right credentials to view the data artefact, if the user is logged in, etc.). If the

access is possible and is permitted, then the Brokerage Engine is invoked. The Brokerage

Engine checks the ledger to resolve the following situations:

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 68 of 73

 Identify whether the user requesting the data is capable of receiving it (e.g. if he/she has

enough “credits” in case the data asset is not free), and

 Verify the availability of the data asset, comparing previous records in the ledger with

the DPF elements that are attached to the data asset. This is essential only in case a data

asset is provided with exclusivity rights (either permanently or within a specific

timeframe), so that there is a check that no exclusivity rights have been transferred at

the moment.

In case the above-mentioned check resolve that the data asset can be shared, then the transaction

is inserted to the ledger, and the AEGIS platform is notified to release the data asset to the user.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 69 of 73

Figure 4-9: Artefact Sharing Workflow

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 70 of 73

4.6. Service creation

The following figure presents the workflow of the user’s perspective when he/she will use the

AEGIS services in order to either perform an analysis or generate a visualisation on an available

dataset. In particular, the user interacts with the Algorithm Execution Container and the

Visualiser components. The user is offered the option to request visualisation from the list of

available visualisations in the Visualiser or a custom visualisation on an available dataset or on

a dataset created as a result of the Query Builder execution. Additionally, the user is offered the

option to perform a new analysis, multi-level analysis by chainable execution of algorithms,

and request visualisation on the analysis results.

Figure 4-10: Service creation workflow

4.7. Service consumption

The following figure shows a workflow of the user’s perspective when he/she will use the

AEGIS platform to perform a general service consumption, which in this specific case includes

the account creation/authentication, the search functionalities related to popular assets, latest

assets and offers, the selection of a Dataset (together with its association with a Project) and the

application to AEGIS main functionalities (Query Builder, Analytics, Visualiser).

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS Consortium

 Page 71 of 73

Figure 4-11: AEGIS Service consumption workflow

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 72 of 73

5. CONCLUSION

The current deliverable documented the efforts undertaken within the context of the tasks 3.1,

3.2, 3.3, 3.4 and 3.5 of WP3. The scope of this deliverable was to deliver a complementary

documentation updating the information documented in deliverable D3.2 for the high-level and

technical architecture of the platform, the platform’s workflows as well as the components that

compose the platform. Within the context of this deliverable, the necessary updates and

adjustments on the platform’s components and the platform’s workflows are documented.

These updates and adjustments are the results of a comprehensive analysis performed on the

first evaluation and feedback received from the project’s demonstrators on the first low fidelity,

functional mock-up version of the AEGIS platform that was delivered in M14.

More specifically, the high-level architecture presented in deliverable D3.2 is further

elaborated, focusing on the updated components and their positioning within the platform in

regards to the functionalities undertaken by each component but also to the technologies and

tools used in order to provide the aforementioned functionalities. Additionally, the technical

architecture of the platform is presented providing deeper insight into the functional

decomposition of components and the relationship between them along with the corresponding

data flow.

In deliverable D3.2, the components of the AEGIS platform were defined and designed. Each

component received several enhancements and refinements after the release of the first version

of the platform. Following the approach used in the previous version, for each component the

corresponding updated functionality was defined along with the corresponding information that

will drive their updated implementation. For each component the list of the designed

microservices and their functionalities are also documented. Moreover, the communication

mechanisms between the components were refined based on the updated interfaces and the

exposed outcomes offered by each component that facilitate the interactions of the components

as well as the realisation of the workflows of the platform. In addition to the high-level

architecture and the comprehensive description of the components of the architecture, the

current document is presenting the updated AEGIS platform’s workflows in the form of BPMN

diagrams that facilitate the data-driven innovation in the PSPS domains as documented in D3.2

containing the necessary adaptations and modifications.

In the next steps, the outcomes of this deliverable will drive the implementation activities of

the project. As the project evolves, the AEGIS platform and the components’ design and

specification will receive further adjustments and modifications as additional requirements will

be received that will introduce new functionalities in the platform. Furthermore, the new version

of the platform will be released and additional feedback from the project’s demonstrators will

be received that will result in further refinements that will be documented in D3.4.

HORIZON 2020 – 732189 - AEGIS D3.3 – Architecture and Revised Components, Microservices

and APIs Designs v2.00

WP3 – System Requirements, User stories, Architecture and Microservices  AEGIS

Consortium

 Page 73 of 73

APPENDIX A: LITERATURE

[1] S. Niazi, S. Haridi and J. Dowling, “Size Matters: Improving the Performance of Small

Files in HDFS,” in EuroSys, 2017.

